Modelling Patterns in Continuous Streams of Data
نویسندگان
چکیده
The untapped source of information, extracted from the increasing number of sensors, can be explored to improve and optimize several systems. Yet, hand in hand with this growth goes the increasing difficulty to manage and organize all this new information. The lack of a standard context representation scheme is one of the main struggles in this research area. Conventional methods for extracting knowledge from data rely on a standard representation or a priori relation, which may not be feasible for IoT and M2M scenarios. With this in mind we propose a stream characterization model in order to provide the foundations for a novel stream similarity metric. Complementing previous work on context organization, we aim to provide an automatic stream organizational model without enforcing specific representations. In this paper we extend our work on stream characterization and devise a novel
منابع مشابه
Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملSingle-Pass Algorithms for Mining Frequency Change Patterns with Limited Space in Evolving Append-Only and Dynamic Transaction Data Streams
In this paper, we propose an online single-pass algorithm MFC-append (Mining Frequency Change patterns in append-only data streams) for online mining frequent frequency change items in continuous append-only data streams. An online space-efficient data structure called ChangeSketch is developed for providing fast response time to compute dynamic frequency changes between data streams. A modifie...
متن کاملارائه روشی پویا جهت پاسخ به پرسوجوهای پیوسته تجمّعی اقتضایی
Data Streams are infinite, fast, time-stamp data elements which are received explosively. Generally, these elements need to be processed in an online, real-time way. So, algorithms to process data streams and answer queries on these streams are mostly one-pass. The execution of such algorithms has some challenges such as memory limitation, scheduling, and accuracy of answers. They will be more ...
متن کاملCompact Tree for Associative Classification of Data Stream Mining
The data streams have recently emerged to address the problems of continuous data. Mining with data streams is the process of extracting knowledge structures from continuous, rapid data records [1]. An important goal in data stream mining is generation of compact representation of data. This helps in reducing time and space needed for further decision making process. In this paper we propose a ...
متن کاملContinuous Energy Values of 3-Amino-4-Nitraminofurazan Molecule by Modern Optimization Techniques
The conformational energy values of 3-amino-4-nitraminofurazan (C2N4O3H2) molecule changing with two torsion angles were firstly calculated using density functional theory (DFT) with Lee-Young-Parr correlation functional and 6-31 G(d) basis set on Gaussian Program. And then, these obtained discrete data were made continuous by using Fuzzy Logic Modelling (FLM) and Artificial Neural Network (ANN...
متن کاملNeed For Speed : Mining Sequential Patterns in Data Streams
Recently, the data mining community has focused on a new challenging model where data arrives sequentially in the form of continuous rapid streams. It is often referred to as data streams or streaming data. Many real-world applications data are more appropriately handled by the data stream model than by traditional static databases. Such applications can be: stock tickers, network traffic measu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- OJBD
دوره 4 شماره
صفحات -
تاریخ انتشار 2018